INDOLE ALKALOIDS FROM Ervatamia flabellformia

Shuang Liang,^{1,2} Haisheng Chen,^{1*} Li Jin,¹ Weidong Xuan,¹ and Wei-Dong Zhang¹

Ervatamia flabellformia Tsiang (Apocynaceae) [1] is a common plant cultivated in Yunnan and Guanxi provinces of China, and its chemical constituents have not been reported yet. As a part of our continuous research on anti-addictive constituents from the genus Ervatamia [2, 3], thirteen indole alkaloids were isolated from the stems of Ervatamia flabellformia.

The stems of *E. flabellformia* were collected in October 2002 in Xishuangbanna, Yunnan province and identified by senior engineer Wang Hong, Xishuangbanna Tropical Botanic Garden of the Chinese Academy of Science. A voucher specimen (No. 200210-1) has been deposited in the Herbarium of the School of Pharmacy, Second Military Medical University, Shanghai.

The air-dried and powdered stems (12 kg) were extracted with 95% EtOH (50 L) under reflux. After removal of EtOH by evaporation under reduced pressure, the residues were extracted with 2% HCl. The aqueous layer was basified with NH₄OH and partitioned with CHCl₃. The CHCl₃ layer was dried over Na₂SO₄ and evaporated under reduced pressure to give 45 g of crude alkaloid fraction, which was submitted to repeated column chromatography over silica gel and Sephadex LH20 (MeOH) to yield 13 indole alkaloids.

All compounds were identified by spectroscopic methods, including NMR and mass spectrometry (NMR spectra were acquired on a Bruker DRX-500 spectrometer with TMS as internal standard, operating at 500 MHz for ¹H and ¹³C; ESIMS data were obtained on a Q-Tof micro mass spectrometer; silica gel H (10-40 µm) for column chromatography and HPTLC plates precoated with silica gel HF₂₅₄ (5–7 µm) were supplied by Zhifu Huangwu Silica Gel D & R Plant, Yantai, China; Sephadex LH-20 and ODS were purchased from Pharmacia and Merck, respectively. The spectroscopic data of all compounds were in good agreement with the literature data [4–14]. All these structures are isolated from E. flabellformia for the first time.

Dihydroperivine (1), colorless cubic crystal (methyl acetate), C₂₀H₂₄N₂O₃. ¹H and ¹³C NMR data are shown in Tables 1 and 3 [4].

3-(*R***)-Hydroxyvoacangine (2)**, white powder, $C_{22}H_{28}N_2O_4$. EI-MS *m/z* (%): 368 (M⁺, 16), 366 (18), 339 (7), 353 (24), 370 (11), 244 (38), 225 (31), 185 (33), 124 (22). ¹H and ¹³C NMR data are shown in Tables 1 and 3 [5].

19-Heyneanine (3), white powder, $C_{21}H_{26}N_2O_3$. EI-MS m/z (%): 354 (M⁺, 100), 339 (67), 309 (18), 253 (10), 214 (42), 195 (15), 168 (18), 140 (31), 130 (20), 94 (38). ¹H and ¹³C NMR data are shown in Tables 1 and 3 [6, 7].

Ibogaine (4), yellow powder, C₂₀H₂₆N₂O. EI-MS *m/z* (%): 310 (M⁺, 68), 295 (9), 280 (12), 225 (41), 186 (10), 149 (40), 136 (100), 135 (80), 122 (51). ¹H and ¹³C NMR data are shown in Tables 1 and 3 [8].

Coronaridine hydroxyindolenine (5), white powder, $C_{21}H_{26}N_2O_3$. EI-MS m/z (%): 354 (M⁺, 82), 337 (100), 325 (9), 295 (12), 230 (10), 244 (47), 188 (16), 161 (22), 136 (12), 122 (15), 108 (10). ¹H and ¹³C NMR data are shown in Tables 1 and 3 [6, 9].

Voacangine hydroxyindolenine (6), white powder, C₂₂H₂₈N₂O₄. EI-MS *m/z* (%): 384 (M⁺, 93), 367 (100), 190 (43), 122 (49), 55 (45), 44 (53), 42 (55), 41 (77). ¹H and ¹³C NMR data are shown in Tables 2 and 3 [10]. **19,20-Dehydroervatamine (7)**, white powder, $C_{21}H_{24}N_2O_3$. ESI m/z: 352 (M⁺). ¹H and ¹³C NMR data are shown

in Tables 2 and 3 [11].

(-)-Hecubine (8), white powder, $C_{20}H_{26}N_2O$. ESI m/z: 310 (M⁺). ¹H and ¹³C NMR data are shown in Tables 2 and 3 [12].

(-)-Mehranine (9), white powder, $C_{20}H_{26}N_2O$. EI-MS m/z (%): 310 (M⁺, 89), 166 (31), 158 (67), 144 (100), 108 (62), 42 (35), 41 (36). ¹H and ¹³C NMR data are shown in Tables 2 and 3 [12].

UDC 547.944

¹⁾ School of Pharmacy, Department of Phytochemistry, Second Military Medical University, Shanghai 200433, P. R. China, fax: +862125074439; e-mail: haishengc@hotmail.com; 2) School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, P. R. China. Published in Khimiya Prirodnykh Soedinenii, No. 5, pp. 543-545, September-October, 2008. Original article submitted May 14, 2007.

C atom	1 ^b	2 ^a	3 ^b	4 ^c	5 ^b
3		4.01 d (J = 8)	3.00 m	2.95 m	2.48 m
			2.80 d (J = 9.0)		2.97 dd (J = 15, 4)
5	3.92 m	3.21 m	3.17 m	3.23 m	3.52 m
		3.39 m	3.42 m	3.02 m	
6	3.34 m	3.00 dd (J = 16, 1)	3.12 m	3.23 m	2.75 m
	3.25 m	3.15 m		2.51 m	
9	7.70 d (J = 8)	6.93 d (J = 2)	7.47 d (J = 8)	6.86 d (J = 1.5)	7.46 d (J = 8)
10	7.09 t (J = 8)		7.07 t (J = 8)		7.23 t (J = 8)
11	7.29 t (J = 8)	6.82 dd (J = 8, 2)	7.17 t (J = 8)	6.62 dd (J = 9.5, 1.5)	7.31 t (J = 8)
12	7.38 d (J = 8)	7.15 d (J = 8)	7.26 d (J = 8)	7.10 d (J = 9.5)	7.34 d (J = 8)
14	2.86 m	1.88 m	1.96 m	1.77 m	1.84 m
15	2.68 m	1.12 dd (J = 10, 7)	1.78 m	1.09 d (J = 12)	1.10 m
		1.73 t (J = 10)	1.83 m	1.77 m	1.78 m
16	2.84 m			2.87 m	
17		1.90 m	2.04 dd (J = 12, 2)	2.02 m	1.91 m
		2.68 dd (J = 12, 2)	2.60 d (J = 12)	1.37-1.50 m	2.01 d (J = 12)
18	0.96 t (J = 7.5)	0.91 s	1.26 d (J = 6)	0.86 t (J = 7)	0.87 t (J = 7)
19	1.22 m	1.45 m	3.90 dq (J = 6, 3)	1.37-1.50 m	1.48 m
	1.66 m	1.58 m			
20	1.22 m	1.32 m	1.42 m	1.37-1.50 m	1.41 m
21	2.36 d (J = 13, 6)	3.87 s	4.10 s	2.72 br	3.81 s
	2.66 m				
COOCH ₃		3.71 s			3.68 s
OCH ₃	2.61 s	3.83 s	3.73 s	3.74 s	
N-H		7.69 s		10.35 s	

TABLE 1. ¹H NMR Data for Compounds 1-5 (δ , ppm, J/Hz)

^aSolution in CDCl₃; ^bsolution in CD₃OD; ^csolution in DMSO-d₆.

Ervadivaricatine A (10), yellow powder, $C_{43}H_{54}N_4O_{45}$. ESI *m/z*: 706 (M⁺); ¹H NMR (CDCl₃, δ , ppm, J/Hz): 0.82 (3H, t, J = 7.5), 0.96 (3H, t, J = 7), 2.43 (3H, s), 2.63 (3H, s), 3.64 (3H, s), 3.98 (3H, s), 5.08 (1H, s), 6.69 (1H, s), 6.92 (1H, s), 7.04 (3H, m), 7.48 (2H, m), 7.69 (1H, s). ¹³C NMR data are shown in Table 4 [13].

Ervadivaricatine B (11), yellow powder, $C_{43}H_{54}N_4O_5$. ESI *m/z*: 706 (M⁺); ¹H NMR (CDCl₃, δ , ppm, J/Hz): 0.86 (3H, t, J = 7.5), 0.94 (3H, t, J = 7), 2.42 (3H, s), 2.69 (3H, s), 3.63 (3H, s), 3.96 (3H, s), 5.07 (1H, s), 6.70 (1H, s), 6.90 (1H, s), 7.03 (3H, m), 7.44–7.56 (3H, m). ¹³C NMR data are shown in Table 4 [13].

Ervahanine A (12), yellow powder, $C_{42}H_{50}N_4O_4$. ESI *m/z*: 704 (M⁺); ¹H NMR (CDCl₃, δ , ppm, J/Hz): 0.82 (3H, t, J = 7.5), 1.67 (3H, d, J = 7), 2.53 (3H, s), 2.63 (3H, s), 3.64 (3H, s), 5.32 (2H, q, J = 7.5), 6.96 (1H, dd, J = 8, 1), 6.99 (1H, s), 7.04 (3H, m), 7.35 (1H, d, J = 8), 7.56 (1H, dd, J = 8, 1). ¹³C NMR data are shown in Table 4 [14].

Conodurine (13), yellow powder, $C_{43}H_{52}N_4O_5$. ESI *m/z*: 674 (M⁺); ¹H NMR (CDCl₃, δ , ppm, J/Hz): 0.81 (3H, d, J = 7.5), 2.47 (3H, s), 2.63 (3H, s), 3.64 (3H, s), 3.97 (3H, s), 5.32 (2H, m), 6.82 (1H, d, J = 8.5), 7.01–7.16 (3H, m), 7.24 (1H, d, J = 8.5), 7.70 (1H, d, J = 8.5). ¹³C NMR data are shown in Table 4 [14].

C atom	6 (CD ₃ OD)	7 (CDCl ₃)	8 (CDCl ₃)	9 (DMSO-d ₆)
2				3 28 m
3	2.72.s		A: 2.67 d $(I = 12)$	A: 2.31 d $(I = 13)$
U			B: 3.28 (I = 12)	B: 3.35 d $(J = 13)$
5	A: 2.95 m	A: 2.28 d $(J = 12)$	A: 2.37 dt $(J = 13, 5)$	A: 2.15 m
	B: 3.48 m	B: $3.46 \text{ br.d} (J = 12)$	B: 2.60 dt $(J = 13, 3.5)$	B: 3.01 m
6	A: 1.86 m	A: 2.90 d $(J = 16)$	2.87 m	A: 1.44 m
	B: 1.94 m	B: 3.64 d $(J = 16)$		B: 2.15 m
9	6.90 d (J = 2.5)	7.61 d $(J = 8)$	7.45 d (J = 7)	6.57 t (J = 7)
10		7.17 ddd (J = 8, 7, 1)	7.07 t $(J = 7)$	6.38 d (J = 7)
11	6.80 dd (J = 2.5, 8)	7.35 ddd (J = 8, 7, 1)	7.15 t (J = 7)	7.00 m
12	7.34 d (J = 8)	7.44 d $(J = 8)$	7.26 d (J = 7)	7.00 m
14	1.90 br	A: 2.48 dd $(J = 16, 11)$	3.13 m	3.22 m
		B: $3.11 d (J = 16)$		
15	A: 1.08 m	3.56 dd (J = 11, 4)	2.92 dd $(J = 4, 1)$	2.85 d (J = 4)
	B: 1.71 m			
16			A: 2.78 m	A: 0.98 m
			B: 4.20 t (J = 14.5)	B: 1.72 m
17	A: 2.47 d (J = 12)		A: 1.73 d $(J = 14)$	A: 1.25 m
	B: 2.70 m		B: 2.22 m	B: 1.64 m
18	0.86 t (J = 7)	1.62 dd (J = 7, 2)	0.75 t (J = 7.5)	0.75 t (J = 7)
19	1.41 m	5.47 q (J = 7)	1.15 m	1.15 m
20	1.41 m			
21	3.76 s	A: 2.65 d (J = 12)	A: 1.75 d (J = 12)	2.27 s
		B: 3.12 D (J = 12)	B: 2.52 d (J = 12)	
COOOCH ₃	3.70 s	3.61 s		
OCH ₃	3.81 s			
NCH ₃		2.33 s	3.71 s	2.68 s
N-H		9.12 s		

TABLE 2. ¹H NMR Data for Compounds **6-9** (δ , ppm, J/Hz)

TABLE 3. ¹³C NMR Data for Compounds **1-9** (δ , ppm)

C atom	1 ^b	2 ^a	3 ^b	4 ^c	5 ^b	6 ^b	7 ^a	8 ^a	9 ^c
2	135.2	137.6	136.1	143.4	189.6	186.9	132.8	140.8	72.01
3	193.6	95.8	51.0	49.7	49.1	48.7	193.6	53.8	52.42
5	51.4	51.2	52.3	54.1	49.5	49.1	61.0	53.6	52.12
6	24.4	21.8	22.0	20.2	34.3	34.2	31.9	26.3	40.61
7	121.8	109.8	110.1	107.4	88.8	88.3	119.5	109.3	50.95
8	129.4	128.7	128.9	129.5	143.1	144.4	127.3	127.8	136.33
9	121.8	100.6	118.8	99.8	121.7	108.0	120.2	117.6	121.32
10	121.1	154.0	119.8	152.9	121.2	159.2	120.6	118.5	116.80
11	127.4	112.0	128.9	109.5	129.5	113.7	126.5	120.3	127.38
12	113.3	111.2	110.8	110.7	127.1	121.3	112.3	108.5	106.30
13	138.6	130.6	135.9	129.5	151.8	144.8	136.8	136.9	149.99
14	40.2	29.9	27.4	26.0	27.4	27.0	43.9	52.4	52.12
15	32.4	24.9	29.0	31.8	32.4	32.1	34.2	59.4	56.00
16	50.2	54.1	54.3	40.2	59.12	58.6	49.3	21.0	19.68
17		35.5	37.1	34.1	35.2	34.6	12.6	35.3	23.10
18	11.4	11.6	22.6	11.7	11.9	11.5	121.7	7.5	7.16
19	26.9	26.6	71.2	27.5	27.0	26.5	136.0	32.5	27.04
20	45.7	37.7	40.1	41.4	38.0	37.6	61.5	33.8	34.14
21	40.8	55.5	53.1	56.8	53.4	58.5	175.3	58.1	66.33
22	172.8	174.8	175.3		174.0	173.9			
COOCH ₃		52.7	54.6		58.7	53.2	52.5		
OCH ₃	50.8	56.2		55.3		55.7			
NCH ₃								30.0	31.11

^aSolution in CDCl₃; ^bsolution in CD₃OD; ^csolution in DMSO-d₆.

C atom	10	11	12	13	C atom	10	11	12	13
2	135.8	136.0	137.4	136.1	2′	130.3	130.7	136.6	136.1
3	38.9	38.1	45.4	35.3	3'	36.4	33.3	51.9	51.4
5	59.6	59.5	60.0	59.8	5'	53.1	53.2	53.2	52.5
6	18.0	19.4	19.3	19.4	6'	22.2	22.3	22.3	22.1
7	110.4	110.8	110.4	109.1	7'	109.9	110.0	110.1	110.0
8	129.6	130.0	129.8	129.5	8'	130.0	130.7	127.6	124.5
9	117.3	117.4	117.4	118.1	9'	99.2	99.8	118.8	117.2
10	119.0	118.8	119.2	119.5	10'	150.8	151.3	119.6	105.2
11	121.6	121.4	121.7	122.2	11'	127.4	127.4	140.1	152.2
12	109.7	109.7	109.9	109.8	12'	110.0	110.4	109.4	114.5
13	137.2	137.4	136.1	136.7	13'	138.0	137.8	135.7	135.2
14	39.0	39.0	39.4	33.7	14'	27.3	27.5	27.3	27.2
15	34.3	32.1	33.8	33.5	15'	31.9	31.5	32.2	31.8
16	43.1	49.6	47.2	47.3	16'	54.9	55.0	55.2	54.8
17					17'	51.9	52.2	36.5	34.8
18	12.8	11.5	12.5	12.3	18'	11.6	11.3	11.6	11.8
19	25.5	23.6	118.7	118.7	19'	26.7	26.8	26.6	26.6
20	42.8	43.9	137.7	137.7	20'	38.9	36.5	39.2	39.1
21	47.2	49.9	52.6	52.7	21'	57.1	57.0	57.1	57.7
22	171.5	171.7	171.9	171.9	22'	175.2	175.1	175.5	175.1
N-CH ₃	49.9	49.9	42.3	42.3	COOCH ₃	52.4	52.2	52.6	52.4
COOCH ₃	42.6	42.5	49.9	49.9	OCH ₃	56.1	56.2		57.0

TABLE 4. ¹³C NMR Data for Compounds **10-13** (CDCl₃, δ, ppm,)

ACKNOWLEDGMENT

The work was supported by the National Natural Science Foundation of China (No. 20272081); Shanghai Leading Academic Discipline Project (No. B906).

REFERENCES

- 1. P. T. Li and Y. Jiang, *Flora of China*, Vol. 16, 106, Science Press, Beijing (1977).
- 2. S. Liang, X. G. Luo, H. S.Chen, and X. D. Zhang, Chin. Chem. Lett., 17, 662 (2006).
- 3. S. Liang, H. S. Chen, and J. L. Du, Acad. J. Second Milit. Med. Univ., 27, 892 (2006).
- 4. J. P. Kutney, G. K. Eigendorf, H. Matsue, A. Murai, and K. Tanaka, J. Am. Chem. Soc., 100, No. 3, 938 (1978).
- 5. A. Madinaveitia, M. Reina, and G. Fuente, J. Nat. Prod., 59, No. 2, 185 (1996).
- 6. T. S. Kam and K. M. Sim, J. Nat. Prod., 65, No. 5, 669 (2002).
- 7. P. Perera, F. Sandberg, T. A. Beek, and R. Verpoorte, *Planta Med.*, 50, No. 3, 251 (1984).
- 8. P. Clivio, B. Richard, and J. R. Deverre, *Phytochemistry*, **30**, No. 11, 3785 (1991).
- 9. M. Azoug, A. Loukaci, and B. Richard, *Phytochemistry*, **39**, No. 5, 1223 (2000).
- 10. A. Madinaveitia, G. Fuente, and A. Gonzalez, Helv. Chim. Acta, 81, 1645 (1998).
- 11. P. Clivio, B. Richard, and M. Zeches, *Phytochemistry*, 29, No 8, 2693 (1990).
- 12. J. Eles, G. Kalaus, and I. Greiner, J. Org. Chem., 67, 7255 (2002).
- 13. L. Y. Huang, X. L. Zhou, and C. M. Li, Chin. Trad. Herb. Drugs, 28, No. 8, 451 (1997).
- 14. T. S. Kam and K. M. Sim, *Phytochemistry*, **63**, No. 3, 625 (2003).